PROJECT REPORT
CAPITAL SOUTHEAST CONNECTOR, SEGMENT D3/E1

On White Rock Road, Between Prairie City Road and Latrobe Road

APPROVED:

[Signature]
Derek Minnessa, PE
Executive Director

Date
7/26/18
This Project Report has been prepared under the direction of the following registered Civil Engineer. The registered Civil Engineer attests to the technical information contained herein and the engineering data upon which recommendations, conclusions, and decisions are based.

Matthew W. Salveson, PE, PhD
Registered Civil Engineer, C56351

Date

Dokken Engineering
110 Blue Ravine Rd #200
Folsom, CA 95630

C 56351
State of California
Table of Contents

1. **INTRODUCTION** ... 1
 A. Project Description .. 1
 B. Project Summary Table ... 2

2. **BACKGROUND** ... 2
 A. Project History ... 2
 B. Tiering from PEIR ... 3
 C. City of Folsom .. 4
 D. Sacramento County ... 5
 E. El Dorado County .. 5
 F. Related Projects – City of Folsom Corporation Yard .. 6
 G. Related Projects – Sacramento-Placerville Transportation Corridor Nature Trail 7
 H. Related Projects – Sacramento County White Rock Road Widening Grant Line Road to Prairie City Road .. 8
 I. Related Projects – El Dorado County WRR Widening Latrobe to Manchester 8

3. **PURPOSE AND NEED** ... 9
 A. Purpose ... 9
 B. Need ... 9

4. **ALTERNATIVE** ... 9
 A. Phase 1 Project ... 9
 B. Future Phase 2 Project .. 13
 C. Topics to be Considered .. 14
 i. Utility Coordination .. 14
 ii. Stormwater ... 14
 iii. Geotechnical Considerations ... 16
 iv. Initial Site Assessment Findings ... 18
 v. Truck Management Plan ... 20
 vi. Life Cycle Cost Analysis .. 22
 vii. Dedicated Truck Climbing Lane ... 22
 viii. Structures and Drainage Facilities .. 23
 ix. Traffic .. 23

5. **RIGHT OF WAY** ... 25

6. **STAKEHOLDER INVOLVEMENT** ... 26

7. **ENVIRONMENTAL DETERMINATION** ... 27

8. **FUNDING** ... 28

9. **SCHEDULE** ... 28

10. **PROJECT PERSONNEL** ... 28

11. **PROJECT REVIEWERS** .. 29

12. **ATTACHMENTS** .. 29
PROJECT REPORT
CAPITAL SOUTHEAST CONNECTOR – SEGMENT D3/E1

1. INTRODUCTION

A. Project Description

The Capital SouthEast Connector Segment D3/E1 Project is located in the City of Folsom, Sacramento County, and El Dorado County, California. The Project site is located along White Rock Road from approximately the White Rock Road and Prairie City Road intersection in Folsom to approximately the White Rock Road and Latrobe Road intersection in El Dorado County. Segment D3 is from Prairie City Road to the County line and Segment E1 is from County line to Latrobe Road. The Capital SouthEast Connector Joint Powers Authority (JPA) is the California Environmental Quality Act (CEQA) lead agency. The portion of the D3 segment from Grant Line Road to Prairie City Road has already been constructed by Sacramento County.

Through the Project, White Rock Road is in a generally east-west orientation, providing a local road connection from the El Dorado County into Sacramento County. There are eight existing formal intersections along White Rock Road in the Project area, including Prairie City Road (north), Scott Road (south), Scott Road (north), Placerville Road/Payen Road, Carson Crossing Road (south), Four Seasons Drive, Manchester Drive, Bailey Circle, and Latrobe Road.

Between Prairie City Road and Carson Crossing Road, White Rock Road is currently a two lane rural road with no shoulders and steep side slopes into open side ditches. Between Carson Crossing Road and Manchester Drive, White Rock Road is currently a two lane road with a paved median. Between Manchester Drive and Latrobe Road, White Rock Road is built to a full four lane section. The existing geometry is highly constrained. Existing overhead utility poles run parallel to the roadway between Prairie City Road and Scott Road (north) and a railroad line crosses White Rock Road just east of the Placerville Road/Payen Road intersection. Alder Creek flows through the Project area between Scott Road (south) and Scott Road (north). A few small natural unnamed creeks cross White Rock Road between Scott Road and Carson Crossing Road through culverts. One creek just west of Carson Crossing Road is protected by wooden guard rail on both sides of the road due to the steep drop off in grade.

The Project also includes an at-grade crossing with the Sacramento-Placerville Transportation Corridor (SPTC). The Project does not include a grade-separated crossing with the SPTC.

The Project functions independently and is a gap closure from the completed Sacramento County improvements west of Prairie City Road to the improvements in El Dorado County near Latrobe Road. The Project will construct a four lane expressway/thoroughfare between Prairie City Road and Latrobe Road, making White Rock Road a continuous four lane roadway from Grant Line Road to Latrobe Road.

The Capital SouthEast Connector Segment D3/E1 Project meets the goals of the JPA Program Environmental Impact Report (PEIR), which include: improving mobility, access, and connections between residential and nonresidential land uses, which have been compromised by
increasing congestion, and to assist in preservation of open space and threatened habitats. The Project is intended to link employment centers and residential areas in the corridor and address current and future deficiencies in transportation capacity, safety, and land use compatibility.

The Project will meet the projected traffic demands for the next 20 years and will include signalized intersections at major cross streets within the Project area, a constraints analysis of future High Occupancy Vehicle (HOV) lanes on the western portion of the Project between Prairie City Road and Scott Road, an at-grade rail crossing (located at the existing railroad along Placerville Road), and future improvement of select intersections to interchanges (“Phase 2” improvements).

B. Project Summary Table

<table>
<thead>
<tr>
<th>Project Limits</th>
<th>White Rock Road between Prairie City Road and Latrobe Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Outlay Support Estimate (PAED, PS&E, ROW Acquisition, CM)</td>
<td>$10.9M</td>
</tr>
<tr>
<td>Construction Estimate (with 18% Contingencies)</td>
<td>$45M - $50M (See Attachment R)</td>
</tr>
<tr>
<td>Right-of-Way Estimate</td>
<td>$4.2M</td>
</tr>
<tr>
<td>Environmental Mitigation</td>
<td>$600,000</td>
</tr>
<tr>
<td>Funding Sources</td>
<td></td>
</tr>
<tr>
<td>Funding Year</td>
<td>4 lane expressway</td>
</tr>
<tr>
<td>Type of Facility</td>
<td>2 standard culverts</td>
</tr>
<tr>
<td>Number of Structures</td>
<td>4 non-standard culverts</td>
</tr>
<tr>
<td></td>
<td>2 bridges</td>
</tr>
<tr>
<td></td>
<td>2 retaining walls</td>
</tr>
<tr>
<td>Environmental Determination or Document</td>
<td>Tiered Initial Study – CEQA only</td>
</tr>
</tbody>
</table>

2. BACKGROUND

A. Project History

Since being formed in 2006, the JPA has prepared a PEIR for the Capital SouthEast Connector. The PEIR was certified by the JPA Board, on March 7, 2012, and a project route was selected, consisting primarily of Kammerer, Grant Line, and White Rock Roads. In 2013, the JPA adopted a Plan of Finance and Project Design Guidelines. In 2014, the Connector was adopted into the General Plan of Sacramento County and the Folsom Plan Area Specific Plan.

The JPA is currently working on updates to the Plan of Finance and Project Design Guidelines and is working towards General Plan amendments in the other member jurisdictions.

Since the completion of the PEIR, the JPA has determined that the improvements within the D3 segment should be completed as a two phase process. The Phase 1 improvements associated with this Project will construct a four lane expressway with at-grade signalized intersections, as
warranted by traffic demands for the current 20 year study period. As necessitated by future
development, the ultimate Phase 2 construction will complete the improvements studied by the
PEIR within the D3 segment. These Phase 2 improvements will mainly include converting
selected intersections to grade separated interchanges and the construction of an HOV lane in
each direction. This phased construction will most efficiently accommodate the growth of the
surrounding areas as they develop over time. The Phase 2 improvements are currently
anticipated to be constructed by the year 2035.

The Phase 1 improvements proposed with this Project Report will conform to the existing
alignments of cross streets (e.g. Prairie City Road). Interim improvements will need to be made
as some of these cross streets are reconstructed and / or realigned with future development.

B. Tiering from PEIR

The CEQA statutory (Section 15152 and 21083.3) of the Public Resources Code allow a
Mitigated Negative Declaration (MND) to be adopted when an Environmental Impact Report
(EIR) has previously been prepared for a program, policy, plan or ordinance. The later Project
must be consistent with that program or other action and must not result in any significant effects
which were not examined in that previous EIR. In order to tier from an EIR, the later Project
must be consistent with the general plan and zoning of the applicable city or county. The MD
must clearly state that it is being tiered upon a previous EIR, reference that EIR, and state where
a copy of the EIR can be examined.

In addition to the findings required of a MND pursuant to Section 21080 and 21064.5, Office of
Planning and Research recommends that the Lead Agency find that:

1. The Project is consistent with the program, policy, plan or ordinance for which the
 previous EIR was prepared.
2. The Project is consistent with the general plan and zoning of the applicable city or
 county.
3. The Project, as revised or mitigated, will not result in any significant effects which were
 not examined in the previous EIR.

The Initial Study / Mitigated Negative Declaration (IS/MND) for the Capital SouthEast
Connector – Segment D3/E1 Project - Phase 1 is a tiered document off of the Connector JPA
Capital SouthEast Connector Project PEIR. The PEIR can be found on the Connector JPA
website: http://www.connectorjpa.net/Project-documents/

The Capital SouthEast Connector – Segment D3/E1 Project is consistent with the program,
policy, plan and ordinance for which the EIR was prepared. The Capital SouthEast Connector –
Segment D3/E1 Project is consistent with the general plan and zoning of the City of Folsom,
Sacramento County and El Dorado County. The Capital SouthEast Connector – Segment D3/E1
Project will not result in any significant effects which were not examined in the PEIR.
Mitigation measures within the PEIR not applicable to the D3/E1 Segment of the Capital SouthEast Connector Project and, therefore not included as part of the Tiered IS/MND are as follows: BIO-2a, BIO-4a, BIO-4b, BIO-5b, BIO-7, CUL-1, CUL-4, GEO-1, HAZ-1, HAZ-2, HYD-6, HYD-7, LU-1b, LU-2, NOI-2, POP-2b, POP-3, TRF-1, TRF-2, TRF-3, TRF-4, and TRF-5.

C. City of Folsom

The D3 segment of the Connector will be immediately to the south of the City of Folsom’s, Folsom Plan Area Specific Plan (FPASP), 2011 South of US 50 Specific Plan project. See Figure 1. The specific plan covers an area in eastern Sacramento County (annexed into the City), south of U.S. 50, and adjacent to the existing Folsom city limits. The specific plan supports a combination of employment-generating uses, retail and supporting services, recreational uses, and a broad range of residential uses and associated infrastructure and roads. The project site is located south of U.S. 50, north of White Rock Road, east of Prairie City Road, and west of the Sacramento/El Dorado County line. The existing boundary between the City of Folsom and Sacramento County is the centerline of the existing White Rock Road.

The specific plan includes: residential units at various densities; land designated for commercial and industrial use, including a regional shopping center, and public/quasi-public uses; elementary, middle, and high schools; community and neighborhood parks; stormwater detention basins; open-space areas and open-space preserves; and major roads with landscaping. Detailed information on the specific plan can be found in the associated environmental document: https://www.folsom.ca.us/civicax/filebank/blobdownload.aspx?blobid=15196

The City of Folsom Planning Commission incorporated the D3 segment of the Connector into the General Plan in July 2014.

Land use projections are documented in the attached Traffic Evaluation Report.
D. Sacramento County

In May 2014, Sacramento County amended the Circulation Element of its General Plan to include the Capital SouthEast Connector. This amendment separated the functional classification for the Connector from the County’s own classifications. The amendment specifies the Connector to be “…a four to six lane expressway segment on Grant Line Road from its intersection with Calvine Road northeasterly to the intersection of White Rock Road, and then on White Rock Road from its intersection with Grant Line Road easterly to the Sacramento County/El Dorado County line.”

According to the Sacramento County General Plan, the County’s urban services boundary extends to the west side of Prairie City Road.

Land use projections are documented in the attached Traffic Evaluation Report.

E. El Dorado County

The E1 segment will improve the existing White Rock Road between the El Dorado County / Sacramento County border and Latrobe Road. The segment is designated as a 4 lane divided road in the County’s General Plan, which is described as follows:
A Four-Lane Divided Road typically has a right-of-way width of 100 feet and a roadway width from curb to curb, including a 16-foot median, of 84 feet. The function of a Four-Lane Divided Road is similar to that of a Six-Lane Divided Road, with the principal difference being capacity. Four-Lane Divided Roads have fully controlled access with limited private property access and public road approaches.

The E1 segment lies just outside of the El Dorado Hills Community Services District and inside the El Dorado Irrigation District.

Land use projections are documented in the attached Traffic Evaluation Report.

F. Related Projects – City of Folsom Corporation Yard

The City of Folsom, in cooperation with the County of Sacramento and Aerojet General Corporation, plan to build a corporation yard southeast of the existing intersection at Prairie City Road and White Rock Road. Approximately 30 acres has been set aside for this improvement. The yard will require agreements between the City and the County. Access routes to the yard from Prairie City Road and Scott Road (south) are yet to be determined and will be addressed in a future project. See Figure 2 for the approximate location relative to the ultimate Phase 2 interchange at Prairie City Road.

![Figure 2 – Possible Footprint of Planned Corporation Yard and Future Phase 2 Interchange](image-url)
G. Related Projects – Sacramento-Placerville Transportation Corridor Nature Trail

In 1991, the Sacramento-Placerville Transportation Corridor Joint Power Authority was established to purchase the Sacramento-Placerville railroad corridor from the Southern Pacific Railway Corporation. Members of the SPTC JPA include the El Dorado County, Sacramento County, the City of Folsom, and the Sacramento Regional Transit District.

An implementation plan for a 28 mile long nature trail along the corridor between Missouri Flat Road and Iron Point road was prepared by Foothill Associates in June 2014.

The study provided an overview of general conditions within the rail corridor including trail features, natural resources, drainage, and crossings as they may relate to implementing the natural trail. Findings from the study were intended to be used to identify the next steps that are necessary to open the natural trail to public use. The study divided the corridor into 21 segments and then prioritized those segments.

The segments crossing the existing White Rock Road (Segment ID’s 20 and 21) were assigned an implementation priority of 2 out of a possible 4 (with 1 being the highest priority).

For this project, the existing at-grade rail crossing at White Rock Road will be relocated to the new Connector. Implementation of a rail-trail crossing is not part of this project. See Figure 3.

![Figure 3 – At-Grade Railroad Crossing](image-url)
H. **Related Projects – Sacramento County White Rock Road Reconstruction**

Sacramento County completed construction of the western portion of the D3 segment in 2014. White Rock Road was realigned between Grant Line Road and Prairie City Road and widened to two lanes in each direction. As-built typical sections are included in Attachment K. See Figure 4.

![Figure 4 – Completed D3 Segment (White Rock Road)](image)

I. **Related Projects – El Dorado County WRR Widening Latrobe to Manchester**

The proposed project will terminate just east of the intersection of White Rock Road and Manchester Drive. El Dorado County completed the widening of White Rock Road between Manchester Drive and Latrobe Road in 2008. As-built typical sections are included in Attachment L. See Figure 5.

![Figure 5 – Completed Widening of White Rock Road in El Dorado County](image)
3. PURPOSE AND NEED

A. Purpose

The primary purpose of the Capital SouthEast Connector Segment D3/E1 Project is to:

- Accommodate travel demand due to planned and approved growth;
- Improve traffic operations;
- Reduce congestion;
- Enhance mobility options within the Project corridor and support planned growth;
- Aid economic vitality by improving accessibility to existing and planned job centers and commercial areas;
- Provide a limited-access, multi-modal facility;
- Improve access to all modes of travel including bicycles and pedestrians;
- Construct an all-weather transportation facility that enables normal mobility and emergency vehicle access; and,
- Provide wildlife crossings at key locations within the Project area.

B. Need

The Capital SouthEast Connector Segment D3/E1 Project is needed because:

- Existing roadways between the City of Folsom and the Counties of Sacramento and El Dorado are insufficient to meet existing and forecasted traffic demand;
- Existing White Rock Road will exceed its capacity and will have unacceptable levels of service due to planned and approved growth indicated in both counties’ and the City of Folsom’s General Plans;
- Existing roadways are insufficient for local east-west circulation;
- Existing roadways are insufficient for pedestrian and bicycle traffic;
- Local streets are increasingly subject to congestion and use by nonlocal traffic;
- Improvements are also needed to address the lack of multimodal transportation infrastructure, including bicycle and pedestrian.
- The Project area needs an all-weather transportation facility to enable normal mobility and emergency vehicle access; and,
- Increasing development encroaches on open space and wildlife habitat and there is a lack of wildlife crossing along throughout the Project area.

4. ALTERNATIVE

A. Phase 1 Project

The Project for the Phase 1 condition will construct a four lane roadway from Prairie City Road in Sacramento County, to Latrobe Road in El Dorado County. The new alignment will be designed in accordance to the most recent JPA Project Design Guidelines. Within the D3 segment, the design speed varies from 65 miles per hour (mph) west of Empire Ranch Road to
55 mph east of Empire Ranch Road, and the E1 design speed is 50 mph. Conceptual geometrics and typical sections for the Phase 1 Project are included in Attachment A.

1. Segment D3

Within the D3 segment, the existing White Rock Road will be reconstructed on a new alignment from just west of the Prairie City Road intersection to the County line. The four lane expressway section will include two 12’ lanes in each direction separated by a depressed unpaved median, with 5’ inside shoulders, 10’ outside shoulders, and a Class I bike/pedestrian trail on the north side of the alignment. The existing signalized intersection at Prairie City will be modified due to the White Rock Road realignment; the intersection will be shifted slightly east and Prairie City Road will be realigned to create a 90 degree intersection. The existing Scott Road (south) intersection will be realigned as a frontage road south of White Rock Road and become the southern leg of the relocated Prairie City Road intersection. A new signalized intersection will be constructed at Scott Road (north). At this location, Scott Road will maintain its existing alignment, thereby creating a skewed intersection at White Rock Road. Slight realignments to Placerville Road and Payen Road will be made to create 90 degree intersections with White Rock Road; these intersections will only allow right turn movements.

The Phase 1 D3 improvements begin just west of the existing Prairie City Road intersection. While this portion of the roadway and intersection were recently completed by the Sacramento County widening project, due to adjacent site constraints and to maintain the desired engineering standards per the JPA Project Design Guidelines, a portion of the widening project will be reconstructed. From just west of the intersection, the new alignment for White Rock Road is south of the existing road along the majority of the D3 segment. Shifting the alignment south was needed in order to maintain the large radius curves and long tangents required to achieve the desired 65 mph design speed and preferred engineering features of the JPA Project Design Guidelines. At the future Empire Ranch Road intersection on the eastern portion of the segment, the new alignment curves north of the existing road. Here, a northern shift was chosen due to minimize significant cut and fill slopes created by large topographic variations. Significant constraints near the Prairie City intersection also directed a southern shift to be the chosen alternative. These constraints include minimizing impacts to the Vernal Pool Management Area located on the Prairie City State Vehicle Recreation Area (SVRA) property on the south, and avoiding any impacts to the documented Aeroject Superfund clean-up site on the north. In addition, a southern alignment shift minimizes impacts to the City of Folsom’s current development plans associated with the Folsom Plan Area Specific Plan on the north side of the roadway throughout the entire segment.

As development occurs on the north side in the City of Folsom, the adjacent streets and intersections will be widened as needed, including Prairie City Road, Scott Road (north), and the future Oak Avenue and Empire Ranch Road.

Drainage facilities incorporated as part of the D3 segment include cross culverts, roadside ditches and linear drainage basins. See “Stormwater” and “Structures and Drainage Facilities” below for further discussion related to drainage improvements.
There is an existing railroad crossing in the D3 segment just east of the existing Placerville Road intersection. Various alternatives were analyzed to maintain the existing crossing, including: a new at grade crossing; a new railroad overhead structure with White Rock Road beneath; an overpass structure with White Rock Road over the existing railroad line; and an undercrossing with White Rock Road beneath the existing railroad line. Due to topographic constraints and future plans to develop the railroad corridor as a nature trail, the JPA and design team determined the at grade crossing to be more feasible solution.

As shown on the Geometric Conceptual Drawings in Attachment A, variations to the Class I bike/pedestrian trail and drainage basins have been included as alternate options. The variation to the Class I bike/pedestrian trail proposes the use of the existing White Rock Road in locations where the existing road will not be impacted by the new expressway improvements. In these locations, the trail would be offset from the roadway instead of adjacent to the north side per the typical roadway section. Offsetting the trail provides additional user safety by being away from the roadway as well as creates a more natural trail corridor. Eliminating the large basins in select locations may have a significant reduction in earthwork, which could be a large cost saving feature. These variations can be incorporated into the final design based project funding requirements and overall project aesthetics.

2. Segment E1

Within the E1 segment, the Project will complete the partial existing four lane section from the County line to Latrobe Road. The four lane thoroughfare section will include two lanes in each direction separated by a 16’ raised median, with 6’ Class II bike facilities, and curb, gutter and sidewalk. The curb, gutter and sidewalk on the south side of the alignment will be maintained and all widening will be done on the north side of the existing roadway, minimizing impacts to existing development on either side of the existing alignment. As needed, existing storm drain facilities and utilities will be modified (see “Structures and Drainage Facilities” below for further discussion related to drainage improvements). All improvements within the E1 segment will remain within either the existing White Rock Road right of way, or proposed dedicated right of way by adjacent development (northwest property of E1 segment).

3. Localized Rejected Alignment Variations

Multiple variations to the selected Project alignment were considered throughout the entire corridor. Below is a list several alignment variations that were considered and rejected:

- Realign Prairie City Road as oriented by the PEIR (slightly east of the proposed Project Prairie City Road alignment) – This alignment did not produce a preferred 90 degree intersection with White Rock Road in the Phase 1 improvements. Additionally, the eastern PEIR alignment had increased impacts to the City of Folsom development properties with the Phase 1 improvements, and even increased impacts with the Phase 2 interchange improvements to the developments and proposed City of Folsom Corporation Yard on the south side of White Rock Road.
- Maintain the skewed alignment of Prairie City Road – Not realigning Prairie City Road at all created a highly skewed intersection with White Rock Road with the Phase 1 intersections improvements. The interchange resulting skewed interchange with the Phase 2 improvements would have additional significant impacts to the City of Folsom developments, Aerojet Superfund site, and Vernal Pool Management Area on the SVRA property. Additionally, the resulting skewed Scott Road (south) would not efficiently tie into the existing Scott Road having substantial impacts to critical biological resources and wetlands on the southern property adjacent to White Rock Road.

- Scott Road (south) intersection at existing location – Both a signalized and right turn only intersection were considered at the existing Scott Road (south) location. In order to maintain desired travel times through the corridor, a signalized intersection was rejected; however, traffic volumes from Scott Road were too high to not provide a left turn movement onto White Rock Road. Therefore, Scott Road was realigned to tie into the Prairie City Road intersection where all movements will be safely provided.

- Realign Scott Road (north) to a 90 degree intersection with White Rock Road – the conceptual alignment in the PEIR for Scott Road (north) realigned Scott Road slightly moving the intersection to the east. To avoid impacts to the adjacent drainage feature on the east of Scott Road and minimize impacts to the adjacent development areas, Scott Road is proposed to maintain its existing alignment. Additionally, adjustments were made to the alignment of White Rock Road to minimize the intersection skew. Maintaining the skew also more efficiently utilizes the remnant right of way in the northwest corner of the intersection during the Phase 2 interchange construction.

- Realign Payen Road to share the same intersection point on White Rock Road as Placerville Road – Multiple intersection configurations were studied for Placerville Road and Payen Road with White Rock Road. Based on traffic volumes and the desire to minimize travel times through the corridor, a signalized intersection was not preferred; therefore, due to safety concerns of unsignalized through and left turn movements, both Placerville Road and Payen Road have only right turn movements. Realigning Payen Road further to the west to intersect White Rock Road opposite the realigned Placerville Road had increased right of way impacts. Since both intersections will only allow right turn movements, having the roadways share an intersection point was not critical.

- White Rock Road at the future Empire Ranch Road – At the location of the future Empire Ranch Road intersection, the topography has large undulations creating significant cut and fill slopes along White Rock Road. With the Phase 2 improvements, an interchange is proposed at this intersection. To maintain design speed, an intersection with Empire Ranch Road on a tangent instead of within a curve, minimize cut/fill slopes, and minimize impacts to the development on the north, multiple alignments for White Rock Road were analyzed. Due to the sharp curves in the existing roadway west of the County line, alignments that attempted to maximize avoidance of the development on the north pushed the alignment far south creating a
large remnant of excess land and considerable right of way impacts to property on the south. Other variations included adjusting the skew angle of Empire Ranch Road and White Rock Road, as well as shifting the intersection. The chosen alignment balances design considerations with impacts to adjacent properties with both Phase 1 and Phase 2 improvements.

B. Future Phase 2 Project

As studied in the PEIR, the future Phase 2 improvements will construct a six lane expressway west of Scott Road with grade separated interchanges within the D3 segment. These future improvements are currently anticipated to be warranted in the year 2035.

The future 6 lane expressway section will include the construction of HOV lanes within the Phase 1 median west of Scott Road with a center concrete barrier. Additionally, interchanges are anticipated at Prairie City Road, Scott Road, and the future Empire Ranch Road intersection. To determine the impacts of these future improvements, multiple alternatives were studied for each location. Future conceptual Phase 2 geometrics are included as Attachment Q.

1. Prairie City Road Interchange

Two alternatives, with several iterations were studied at this location. The primary interchange configurations studied include a type L-8 two quadrant cloverleaf interchange and a type L-2 tight diamond interchange. The interchange configurations were chosen based on their general smaller footprint and ability to accommodate several different site constraints. In particular these constraints include, impacts to the Prairie City SVRA Vernal Pool Management Area, Aerojet Superfund site, and proposed development associated with the City of Folsom’s development plans. Multiple iterations of these interchanges were analyzed to reduce right of way impacts of each constraint. The preferred alternative is a type L-2 tight diamond interchange.

2. Scott Road (North) Interchange

At this location, the primary interchange configuration studied was a type L-2 tight diamond interchange. Multiple variations of the interchange were considered to minimize impacts to the proposed adjacent development and to most efficiently utilize the remnant right of way created by the realignment of White Rock Road with the Phase 1 improvements.

3. Empire Ranch Road Interchange

At this location, both a type L-2 tight diamond interchange and type L-8 two quadrant cloverleaf interchange configuration with several iterations were studied. The various iterations were to minimize impacts to the City of Folsom’s proposed development plans on the north side of White Rock Road, and maintain efficient engineering standards between the future eastern ramps and proposed/existing development within El Dorado County. The preferred alternative is a type L-2 tight diamond interchange.
Final design for each future interchange will require coordination between all stakeholders, including the JPA, Sacramento County, City of Folsom, and the property owners of the adjacent development properties.

C. Topics to be Considered

1. Utility Coordination

The following is a list of existing utilities within the Project area:

- Pacific Gas and Electric
- MCI World Communication
- AT&T
- XO Communications, Inc.
- American Tower (Spectrasite)
- El Dorado Irrigation District
- Comcast Cable Communication
- Sacramento Municipal Utility District
- Teleport Communication Group
- Sacramento Regional County Sanitation District

Utility “A” letters have been sent to all the above utility stakeholders. The Project will require potholing to determine if the underground utilities with the project limit will require relocation. In the event underground utilities do conflict with the proposed improvements or new underground drainage facilities, the utilities will be relocated to provide the required utility clearance; however, at this time minimal relocations are anticipated. Relocation of multiple overhead utility lines in conflict with the proposed improvements in the D3 segment will be required. In particular, the proposed alignment will conflict with numerous transmission towers. Coordination with utility companies regarding design, timing of relocation, and obtaining required right of way and easements will be completed during the final design phase of the project. A public utility easement is contemplated on the south side of the new connector. A copy of the utility tracking matrix is attached to this report.

2. Stormwater - Segment D3

The purpose of this report was as follows:

- Identify and evaluate the drainage facilities needed to convey on-and off-site storm runoff and maintain existing drainage patterns. This evaluation focuses primarily on facilities with the potential to impact environmental and right of way limits, such as roadside ditches and detention basins.

- Determine the need to attenuate increases in peak flow runoff generated by the project improvements.
• Identify the water quality features necessary to comply with the Sacramento Area wide NPDES Municipal Stormwater Permit.

In accordance with the JPA Project Design Guidelines, the selection and preliminary design of the proposed drainage facilities was based on the following objectives:

• Maintain existing drainage flow patterns and minimize diversions from one watershed to another to the extent possible.

• Provide low-impact development and stormwater treatment best management practices to improve runoff water quality and minimize downstream erosion/sedimentation.

As a result, the proposed project will include vegetated roadside ditches along the north and south side of White Rock Road, longitudinal and traditional detention basins to attenuate stormwater runoff, hydromodification basins to improve runoff water quality, and toe of fill ditches and cross culverts/bridges to maintain existing off-site flow patterns. An exhibit showing the location of these facilities is provided in the full drainage report.

Additional drainage facilities that will be considered during final design (PS&E) include median and/or ditch inlets, downdrains, and asphalt concrete overside drains.

3. Stormwater - Segment E1

The purpose of this report was as follows:

• Identify and evaluate the on-and off-site drainage facilities needed to convey roadway runoff and maintain existing drainage patterns. This evaluation focuses primarily on facilities with the potential to impact environmental and right of way limits, such as roadside ditches and detention basins.

• Determine the need to attenuate increases in peak flow runoff generated by the project improvements.

• Identify the water quality features necessary to comply with the County’s current Municipal Separate Storm Sewer System (MS4) permit.

The proposed roadway improvements in Segment E1 involve the widening of White Rock Road from two to four lanes with a center median, largely on its existing alignment. The project will maintain the curb, gutter and sidewalk improvements that currently exist along the south side of the roadway and will widen the roadway to the north. As a result, in the proposed condition for the entire E1 Segment will have curb and gutter along the north and south side of the roadway. The following drainage improvements will therefore be required:

On-Site Drainage
The on-site drainage improvements needed to accommodate the widened roadway include adding storm drain inlets along the north side of the roadway and connecting these inlets to the
existing storm drain trunkline via pipe laterals. The majority of the additional flow generated by the widened roadway will be collected by the storm drain system west of Manchester Drive. It has been verified that this system, as well as the system east of Manchester Drive, has been sized to accommodate runoff from the ultimate four lane section of White Rock Road. As a result, the hydraulic performance of these systems will not be impacted by the project.

Off-Site Drainage

The existing drainage facilities associated with conveying off-site runoff through the project area, including the concrete arch culverts west of Four Seasons Drive and east of Windfield Way, will not need to be modified as a result of the project. Since these culverts were originally sized to accommodate the ultimate four lane section of White Rock Road, the hydraulic performance of these culverts will not be impacted by the project. The proposed El Dorado Springs 23 development, to be constructed north of White Rock Road between Four Seasons Drive and the County line, will collect and contain runoff onsite and will discharge to Carson Creek Tributary 3 as well as to the existing underground storm drain system in White Rock Road.

Detention Facilities

The proposed roadway improvements will generate additional runoff from the project area due to an increase in impervious surfaces. This additional runoff will drain to the Carson Creek watershed. Based on a review of the Carson Creek Regional Drainage Study, which evaluated the need for detention facilities within the Carson Creek watershed due to planned improvements/development, it has been determined that the study accounted for White Rock Road as a four lane divided roadway. As a result, the additional runoff generated by the project has been accounted for in the regional drainage plan and individual detention facilities will not be required for this project.

A summary of the proposed drainage facilities is provided in the full drainage report.

4. **Geotechnical Considerations**

Preliminary Geotechnical Design Report

A Preliminary Geotechnical Design Report was prepared for this project. The report makes the following conclusions and recommendations:

Cuts and Excavations

Cut slopes on the order of 5 to 40 feet will be required for the proposed improvements. Cuts and excavations in bedrock should be stable at inclinations of 1H:1V or flatter. Cut slopes in bedrock material may expose localized weak zones or fracture orientations that are prone to shallow sloughing.
All cut slopes be observed by an engineering geologist during grading to determine if adversely oriented fractures exist. To mitigate potential erosion, slopes constructed in soil or in completely to highly weathered rock should be vegetated as soon as possible, and surface drainage should be directed away from the tops of slopes. Placing V-ditches across tops of slopes will aid in reducing the potential for surficial erosion.

Bedrock at the site generally consists of very dense, weathered, metavolcanic and metasedimentary rock. Weathering generally decreases with depth, and moderate to heavy ripping will likely be required at depths below 3 to 4 feet. Pre-ripping with a large excavator (such as a Caterpillar 245) with a ripping shank or rock trenchers may be required for trenching. Excavations extending deeper than approximately 15 feet, particularly in metavolcanic rock, will likely require additional effort and the use of specialized rock excavation equipment, including the use of blasting. This material generally breaks down to gravel- to cobble-sized (12 inches or smaller) fragments when excavated; however, some boulder-sized material (12 inches and larger) may be generated, particularly from deeper excavations.

Embankments/Fill Slopes

From a geotechnical perspective, soil embankments and fill slopes may be constructed at inclinations of 2H:1V or flatter. Steeper slopes may be possible if soil reinforcement, engineered buttresses, or surface treatments are used.

Based on experience in the area, soil generated from onsite and local excavations are likely suitable for use as embankment and general fill. However, some screening and selection may be required depending on excavation location and intended use. For example, retaining wall (structure) backfill may require the use of primarily granular (sandy) soil rather than silty or clayey soil. Similarly, select, low-expansive soil may be required within specific portions of the bridge approach embankments, near the abutments.

Fill material in areas with underground utilities, foundations, and areas within 5 feet of slope faces should consist of 6-inch-minus material with a sufficient amount of soil to provide adequate binder to reduce the potential for excavation caving. In other areas (general fill areas without utilities, foundations, and not within 5 feet of slope faces) rock or cementations larger than 6 inches but less than 2 feet in maximum dimension may be used. Rock or cementations greater than 2 feet in maximum dimension should not be used. This material should contain a sufficient amount of soil to fill void spaces between rocks and reduce rock nesting (concentrations of rock with void space). If sufficient soil fill materials are not present at the site to mix with onsite rock material, import of soil fill material will be necessary.

All grading should be performed in conformance with Sections 6-3, 19-3, 19-5, and 19-6 of Caltrans’ Standard Specifications or equivalent.

Retaining Walls

Based on project topography, retaining walls up to 18 feet high (retained height) may be required. Based on the anticipated subsurface conditions at the site, Caltrans Standard Type 1 and Type 7 cantilever retaining walls will be adequate. Conventional shallow foundations are
anticipated to be suitable for Type 1 retaining walls with 15-foot or less retained height founded in competent bedrock or engineered fill.

Subsurface exploration and laboratory testing should be performed at proposed retaining wall locations to confirm the anticipated wall and foundation types.

5. Initial Site Assessment Findings

An Initial Site Assessment (ISA) was prepared for this project in order to identify Recognized Environmental Conditions (RECs) for the project site that may adversely affect bridge and roadway construction or project corridor right-of-way acquisition. The ISA is intended to be in general compliance with the US Environmental Protection Agency’s “Standards and Practice for All Appropriate Inquires (AAI)” and with the “Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process”. Certain exceptions in this ISA, to the AAI standard, included:

1. No property appraisals performed for the subject properties and;
2. No direct interviews of the owners of the subject parcels due to the large amount of information already accumulated for each affect property and political sensitivity of the project.

This ISA was conducted for a study area comprising the Capital SouthEast Connector Project D3/E1 Segment. The ISA includes a summary of the site reconnaissance conducted on May 22nd, 2015, a review of environmental databases queried April 16, 2015, and a review of historical data sources. The ISA also identifies potential sources of materials that may require special handling under Federal or California regulations.

The following REC’s were identified and associated recommendations proposed:

1. Dokken Engineering reviewed geologic mapping and conducted site reconnaissance of the project area. During this review Dokken Engineering did find indications of a REC with respect to Naturally Occurring Asbestos (NOA) and Asbestos Containing Materials (ACM). Further testing during the Phase II ISA is warranted. See Recommendation No. 1

2. Dokken Engineering identified a REC with respect to the timber used for guard rail posts. When chemically treated wood components are removed, the debris is defined as hazardous waste due to the chemicals used to treat the wood (treated wood waste, TWW). California Department of Toxic Substance Control (DTSC) regulations §66261.9.5 provide alternative management standards (AMS) for TWW. Based on DTSC’s AMS regulations, 2010 SSP 14-11.09 is applicable. This SSP directs the Contractor to follow the AMS including providing training to all personnel that may come in contact with TWW. This training must include, at a minimum, safe handling, sorting and segregating, storage, labeling (including date), and proper disposal methods. See Recommendation No. 2
3. Dokken Engineering identified a REC with respect to yellow traffic paint through site reconnaissance. The paint will need to be tested for lead content, and if found to have concentrations of lead that exceed the DTSC threshold for hazardous materials be handled per Caltrans Special Provision. Further testing during the Phase II ISA is warranted. See Recommendation No. 3.

4. Dokken Engineering identified a leaking transformer through site reconnaissance. The leaking transformer and any future leaking transformers will need to be removed, replaced, or relocated before construction. If during construction a leaking transformer is observed, it will need to be considered a potential polychlorinated biphenyl (PCB) hazard and will to be sampled and analyzed for PCBs. Further testing during the Phase II ISA is warranted. See Recommendation No. 4.

5. Dokken Engineering identified a REC with respect to the potential for contaminated soil/ground water near Prairie City Road along White Rock Road due to the close proximity of Aerojet’s inactive waste disposal facility. Further testing during the Phase II ISA is warranted. See Recommendation No. 5.

A Phase II ISA will be required to address the recommendations listed in this document. The Phase II ISA will need to identify and quantify the areas that contain NOA, ACM, TWW, existing paint that contains lead, leaking electrical transformer PCB contamination and contaminated soil/groundwater near the Aerojet inactive waste disposal site.

Recommendations

Recommendation No. 1 – Per the conclusions outlined in the Naturally Occurring Asbestos Screening Study, dated June 3, 2015, samples collecting from borings taken along the preferred alternatives alignment between Scott Road (south) and Placerville Road shall be analyzed for NOA and the results documented in the Phase II ISA.

For Sacramento County, authority to enforce the federal asbestos National Emissions Standards for Hazardous Air Pollutants regulations (NESHAP, 40 CFR Part 61, Subpart M) has been delegated to the Sacramento Metropolitan Air Quality Management District. The District requires the Project Manager to provide written notification of demolition or renovation of structures (including a CAC assessment report) at least 10 business days prior to start of demolition, regardless of the presence or absence of asbestos in building materials. Additionally, permits and/or fees may be required. The applicable Caltrans Nonstandard Standard Special Provision (nSSP) is 14 9.02 – Air Quality, NESHAP Notification.

The El Dorado County Air Quality Management District (District) regulates Naturally Occurring Asbestos. However, the District has not been delegated the authority to regulate demolition or renovation of facilities that may contain asbestos containing building materials. The California Air Resources Board (CARB) regulates facility demolition and renovation by requiring notification, conducting the inspections, investigating complaints, collecting asbestos samples and taking enforcement actions. A written notification is required to United State Environmental Protection Agency (USEPA) and the California Air Resources Board (CARB) at least 10
working days prior to the demolition/renovation activities that are located in non-delegated air districts.

Recommendation No. 2 – The chemically treated wood must be treated as TWW and disposed of as hazardous waste. For the TWW, the DTSC regulations §66261.9.5 provide alternative management standards (AMS) for TWW. Caltrans Special Standard Provision (SSP) for TWW, SSP 14-11.09, is based on DTSCs AMS regulations. This SSP directs the Contractor to follow the AMS including providing training to all personnel that may come in contact with TWW. This training must include, at a minimum, safe handling, sorting and segregating, storage, labeling (including date), and proper disposal methods.

Recommendation No. 3 – If the analytical concentrations of lead in the yellow traffic paint samples exceeding 1000 mg/kg, the traffic paint material must be disposed of in accordance with Cal OSHA Title 8 and the Caltrans Standard Special Provisions for removal of lead paint Provision 14-11.07, Remove Yellow Traffic Stripe and Pavement Marking with Hazardous Waste Residue.

Recommendation No. 4 – Any leaking transformers should be removed, replaced, or relocated before the beginning of construction. If any leaking transformers are encountered during construction, then the transformer fluid should be sampled and analyzed for PCB’s. Any leaking transformers should be removed, replaced, or relocated before the beginning of construction. The Phase II ISA shall identify and quantify the number of transformers along the preferred alternative alignment and document any leaks.

Recommendation No. 5 – Geotechnical borings and soil testing for contamination will be needed near Prairie City Road and White Rock Road due to the close proximity of Aerojet’s inactive waste disposal facility as part of the Phase II ISA. Any borings that encounter ground water in that area of the project will be tested for contamination and documented as part of the Phase II ISA. Special attention will be required due Aerojet’s inactive waste disposal burn facility, also known as Area 40 (see Figure 4, or Appendix G) as mentioned in the Draft EIR/EIS report by AECOM, between Prairie City Road and White Rock Road. The Site has been designated by a Superfund Site the U.S. Environmental Protection Agency (EPA) in 1983.

6. **Truck Management Plan**

Sacramento County Division of Transportation prepared the East Sacramento Region Aggregate Mining Truck Management Plan Final Technical Report in December 2011 (included in Attachment P).

Prior to 2009, Sacramento County had received applications for hard-rock mining projects in east Sacramento County from three companies: Teichert, Granite Construction and DeSilva Gates Construction. DeSilva Gates subsequently withdrew its application for a quarry but the property owners of that site, Barton Ranch, intend to resubmit an application for a similar project, called Millgate Quarry. Granite Construction also withdrew its application for the Walltown Quarry Project but the property owners of that site continued processing that project which is now called the Stoneridge Quarry Project.
Eventually a substantial amount of aggregate may be shipped by truck using the existing and planned roadway system serving eastern Sacramento County. The concentration of future truck traffic on roadways near the proposed quarries has raised concerns from stakeholders. These stakeholders include:

Public Stakeholders

- Sacramento County
- El Dorado County
- City of Folsom
- City of Rancho Cordova
- Caltrans
- Capital Southeast Connector JPA

Private Stakeholders

- Teichert Aggregates
- Stoneridge Quarry
- Granite Construction
- Barton Ranch (Millgate Quarry)
- Property owners of Folsom Sphere of Influence Area South of US 50

The goals of the Truck Management Plan were as follows:

- To plan, phase, fund, and implement roadway improvements needed to accommodate the mobility needs of the east county quarries, GreenCycle and the traveling public to meet the given demand.
- To consider creative transportation solutions that are sensitive to affected existing and future land uses while minimizing out of way travel.
- To promote stakeholder collaboration and cooperation.

The following analyses were performed in the development of the Truck Management Plan:

- Estimation of the amount of truck traffic generated from the proposed quarries and the distribution of that traffic.
- Estimation of the traffic demand from proposed development near the quarry sites.
- Identification of an initial set of potential truck access scenarios.
- Analysis of traffic operations under each truck access scenario.
- Determination of the general roadway improvements that would be needed to accommodate the estimated truck traffic.
- Definition of additional truck access scenarios that address “quality of life” concerns.

For the purposes of this project, the Phase 1 improvements are designed to accommodate a future truck lane between Scott Road (south) and Prairie City Road. The ultimate Phase 2 interchange
footprints at Prairie City Road and Scott Road (south) were also devised to accommodate the truck traffic envisioned in the Truck Management Plan.

7. **Life Cycle Cost Analysis**

A Life Cycle Cost Analysis (LCCA) was prepared for the D3/E1 segments of the Connector. The LCCA was done in accordance with the LCCA Procedures Manual and the “Documenting Life-Cycle Cost Analysis for Pavements” from the Caltrans Project Development Procedures Manual. Pavement alternatives for 20 and 40 year flexible and rigid pavements and the incorporation of geogrid have been included.

RealCost was used to compare eye LCCA alternatives: two 40 year Flexible Pavements*, one 40 year Rigid Pavement with Continuous Reinforced Concrete Pavement (CRCP) and one 40 year Rigid Pavement with Joint Plain Concrete Pavement (JPCP), two 20 year Flexible Pavements, one 20 year Flexible Pavement with Geogrid, and one 40 year Flexible Pavement with Geogrid. RealCost is software developed by the Federal Highway Administration (FHWA) to support the application of life-cycle cost analysis in the pavement project-level decision making process. The eight LCCA alternatives used a 55 year analysis period, which assumes proper maintenance and rehabilitation occur over the full analysis period. The pavement sections for each alternative were developed based on the structural section recommendations in the Preliminary Geotechnical Design Reports prepared by Geocon Consultants, Inc., dated September 2015.

The total life-cycle costs for the eight alternatives were predicted to be as follows:

- Alt 1 40 year flexible pavement with full depth section: $26.6 million
- Alt 2 40 year rigid pavement with CRCP: $20.0 million
- Alt 3 40 year rigid pavement with JPCP: $20.9 million
- Alt 4 40 year flexible pavement: $21.3 million
- Alt 5 20 year flexible pavement: $30.5 million
- Alt 6 20 year flexible pavement with RHMA: $25.9 million
- Alt 7 20 year flexible pavement with Geogrid: $28.9 million
- Alt 8 40 year flexible pavement with Geogrid: $22.0 million

Alternative 7, the 20 year flexible pavement section, will have the lowest initial construction cost of approximately $11.5M. For comparison, Alternative 2, the 40 year rigid pavement with the lowest life-cycle cost, will have an initial construction cost of approximately $20.2M. It is anticipated that further, more detailed, design refinements to the pavement sections will be completed early in the final design process.

8. **Dedicated Truck Climbing Lane**

The need for a dedicated truck climbing lane on the D3 segment was summarized in a memorandum in Attachment Q. Based on LOS considerations and HDM guidelines, a dedicated truck climbing lane is not recommended for this segment of the Connector.
9. Structures and Drainage Facilities

Thirty-two structures will be required to facilitate drainage throughout the project. These include bridges, pipe culverts, concrete box culverts, and concrete open bottom culverts. The proposed structure types and station locations are presented in Attachment N.

Subsurface exploration and laboratory testing should be performed at proposed bridge and concrete culvert locations to confirm the anticipated structure and foundation types.

Bridges

Two reinforced concrete slab bridges are anticipated. The first, Structure No. 12, is a multiple span bridge set on concrete pile extension bents. The bridge can accommodate a bike path under the structure and will serve as a wildlife crossing. The second bridge, Structure No. 14, is single span bridge.

Multiple alignment configurations were developed for each structure. These include: constructing parallel structures that do not include the future median lanes, with a separate prefabricated pedestrian bridge for the parallel bike path; constructing a single bridge that will accommodate the future center lanes, again with a separate pedestrian bridge; and a single wide bridge that includes both the future center lanes and additional width to place the bike path on the mainline structure. Advanced Planning Studies (APS) are included in Attachment N.

Pipe Culverts

Pipe culverts are utilized for drainage whenever larger structures are not needed to convey the flows. Twenty-two pipe culvert crossings are required, including on streets connecting to the mainline.

Concrete Culverts

Two concrete box culverts, with concrete inverts, are proposed. Box culverts were selected as the most economical structure type for the site conditions. An APS for Structure No. 18 is included in Attachment N.

Four concrete bottomless culverts are proposed. These open bottom culverts are used when fill in waters of the U.S. is desired to be avoided. An APS for Structure No. 24 is included in Attachment N.

10. Traffic

A Traffic Evaluation Report was prepared to document an evaluation of proposed Phase I improvements at select key intersections and along segment D3/E1. Phase I of segment D3/E1 includes a four-lane expressway facility with at-grade intersections. Although the report was primarily intended to document whether Phase I improvements are effective for the next 20 years (to year 2035), additional data and operational results are provided for Existing (2015), an
Opening Year (2025), and MTP/SCS Forecast Year (2035) conditions to support the preparation of required environmental documentation.

The PEIR established and analyzed the major transportation elements included in the project definition. Subsequently, this project and other subsequent actions are planned to “tier” off the PEIR as they are intended to solely address project specific considerations of the individual Connector segments. Considering that the prior No-Build Alternative described in the PEIR was based on previous iterations of JPA member agencies’ General Plans that did not include the Connector, and that those same General Plans have since been updated to now incorporate the Connector, the previous No-Build Alternative no longer exists and as a practical matter is now the same as the Connector. Accordingly, this study has taken a more conservative view of the No-Build Alternative, where in no improvements along the Connector beyond those specifically related to planned development projects would be completed in future years. As such the No-Build Alternative was primarily analyzed as an unimproved facility in future years which, as demonstrated by the analysis contained in this evaluation, results in markedly lower traffic volumes than as were previously shown for the No-Project Alternative.

Based on the results of a limited model review, given the age of the PEIR analysis (including the TDM/future land use scenarios on which it was based), and differences in volumes noted between the Connector PEIR and other more recent models, it was determined that updated future traffic estimates should be prepared for this analysis. Considering the level of refinement already included in the Folsom Ranch (Russell Ranch) model for the study area and its relative performance as compared to other candidate models, it was selected as the basis for modeling on this study. The Folsom Ranch (Russell Ranch) model was subsequently further refined to specifically meet the needs of this study.

The traffic evaluation considered the following analysis scenarios:

Existing Year (2015) Conditions (No-Build and Build)
Reflects existing Year (2015) Conditions using on-the-ground counts, existing geometrics, and current traffic control for the No-Build condition. The Build condition considers the operational effect of a 4-lane Connector Segment D3/E1 with at-grade, signalized intersections added to the existing conditions.

Opening Year (2025) Conditions (No-Build and Build)
Reflects an estimated Year 2025 land use condition with the Year 2035 No-Build network geometry. The Build condition considers the operational effect of a 4-lane Connector (34-miles) and at-grade, signalized intersections along the study corridor.

MTP/SCS Forecast Year (2035) Conditions (No-Build and Build)
Reflects forecast Year 2035 Conditions as defined by the 2012 Metropolitan Transportation Plan/Sustainable Community Strategies (MTP/SCS). The Build condition considers the operational effect of a 4-lane Connector (34-miles) and at-grade, signalized intersections along the study corridor.

This traffic analysis was completed for the following transportation facilities:
Intersections
1. White Rock Road @ Prairie City Road
2. White Rock Road @ Oak Avenue Parkway
3. White Rock Road @ Scott Road (East)
4. White Rock Road @ Empire Ranch Road
5. White Rock Road @ Carson Crossing
6. White Rock Road @ Stonebriar/Four Seasons
7. White Rock Road @ Manchester Drive
8. White Rock Road @ Windfield Way
9. White Rock Road @ Latrobe Road

Roadway Segments
1. Segment D3 (West), White Rock Road between Prairie City Road and Scott Road (East)
2. Segment D3 (East), White Rock Road between Scott Road (East) and the County Line
3. Segment E1, White Rock Road between the County Line and Latrobe Road

The following are the significant findings of this traffic evaluation:

- The addition of the Phase I project improves the Segment D3/E1 roadway segment operations from LOS E/F to LOS A/B under Existing Year (2015), Opening Year (2025), and MTP/SCS Forecast Year (2035) conditions.

- The Prairie City Road intersection is shown to operate at LOS D under MTP/SCS Forecast Year (2035) Conditions. The JPA’s Project Design Guidelines specify that where traffic studies indicate proposed signalized intersections cannot satisfy the LOS C or better criteria, an interchange should be considered. The Guidelines also state that the preferred intersection connection type for expressway segments is an interchange. As such, the Segment D3/E1 Phase I project is recognized to provide an acceptable LOS through the design year, however a Phase II improvement will likely be triggered at this intersection if the MTP/SCS forecasts come to fruition by 2035.

5. RIGHT OF WAY

In general, the alignment reflected in the GCD is designed to be kept as close to the existing White Rock Road alignment as possible. A map of the associated right of way needs and likely costs can be found in Attachment D. The map shows an estimate of the fee takes and temporary construction easements that will be needed for every parcel along the D3 and E1 segments. The right of way estimate makes a number of assumptions:

- Existing access will be maintained.
- Fee take values are based on recent comps.
- Temporary construction easement values per square foot are assumed to be 10% of the fee take value.
• The estimate does not assume any property will be dedicated.
• The areas required for fee takes are based on a conservative project footprint (e.g. 4:1 slopes and a full 200 foot right of way and a 20 foot public utilities easement.
• Right of way impacts are only considered for the phase 1 project improvements.

Based on these assumptions, fee takes will require approximately $4.0M and temporary construction easements will require approximately $200,000.

6. STAKEHOLDER INVOLVEMENT

Extensive stakeholder coordination has been performed throughout the preliminary engineering process of the D3/E1 segments by Dokken Engineering and JPA staff. This coordination included:

• A public meeting
• Utility coordination (“A Letters”)
• Formal presentations
• PDT coordination with public agency staff
• Design focus meetings
• Regular updates to the JPA board
• Coordination of environmental staff between projects
• Coordination for rights of entry

Stakeholders included:

Public Agencies

• El Dorado County
• Sacramento County
• City of Folsom
• Capital SouthEast Connector JPA
• California Public Utilities Commission
• State of California (Parks)
• Sacramento Placerville Transportation Corridor JPA
• Springfield Meadows CSD
• El Dorado Irrigation District
• El Dorado Hills CSD

Private Land Owners and Associations

• Easton Development Company
• Aerojet General Corp
• Angelo K. Tsakopoulos
• Aerojet Rocketdyne Incorp
• Folsom Real Estate South
• White Rock Road Properties
• Tsakopoulos Trusts
• White Rock Land Investors
• Wilson Ranch
• Arcadian Heights
• John R. Hannan and Roy A. Cunha
• Gragg Ranch Recovery
• TNHC Russel Ranch
• Folsom Heights
• Frank G. Stathos
• Portico El Dorado Hills
• Four Seasons Owner Association
• Standard Pacific Corporation
• Teichert

Utilities

• Pacific Gas and Electric
• MCI World Communication
• AT&T
• XO Communications, Inc.
• American Tower (Spectrasite)
• El Dorado Irrigation District
• Comcast Cable Communication
• Sacramento Municipal Utility District
• Teleport Communication Group
• Sacramento Regional County Sanitation District

All stakeholders received a notice of availability when the environmental documentation was circulated to the public.

7. ENVIRONMENTAL DETERMINATION

The Connector JPA has adopted a Tiered MND for this Project. The determination has been made based on comments received by interested agencies during the 30 day public circulation between October 13, 2015 and November 13, 2015.

This determination concludes that the Project will not have a significant impact on the environment with the inclusion of appropriate avoidance, minimization, and mitigation measures included herein. From the results of the Initial Study, the Connector JPA has determined the Project would not have a significant impact on the environment for the following reasons:

• The Project would have less than significant impact with mitigation incorporated to aesthetics, air quality, biological resources, cultural resources, geology and soils, hazards and hazardous materials, hydrology and water quality, land use and planning, noise,
population and housing, public services, recreation, transportation/traffic, utilities and mandatory findings of significance.

- The Project would not result in any new potentially significant impacts not previously identified within the PEIR to greenhouse gases.

8. **FUNDING**

9. **SCHEDULE**

<table>
<thead>
<tr>
<th>Project Milestones</th>
<th>Scheduled Delivery Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin Environmental</td>
<td>February 2015</td>
</tr>
<tr>
<td>Circulate Draft ED to Public</td>
<td>November 2015</td>
</tr>
<tr>
<td>Approve Final ED</td>
<td>January 2016 (target)</td>
</tr>
<tr>
<td>Approve GAD</td>
<td>January 2016 (target)</td>
</tr>
<tr>
<td>Approve Project Report</td>
<td>January 2016 (target)</td>
</tr>
<tr>
<td>Start PS&E</td>
<td>February 2016 (target)</td>
</tr>
<tr>
<td>Start ROW Acquisition and Utility Relocation Process</td>
<td>March 2016 (target)</td>
</tr>
<tr>
<td>Award CMGC Contract</td>
<td>July 2016 (target)</td>
</tr>
<tr>
<td>Complete PS&E</td>
<td>July 2017 (target)</td>
</tr>
<tr>
<td>Complete ROW Acquisition</td>
<td>September 2017 (target)</td>
</tr>
<tr>
<td>Award Construction Contract</td>
<td>January 2018 (target)</td>
</tr>
<tr>
<td>Construction Complete</td>
<td>December 2019 (target)</td>
</tr>
</tbody>
</table>

The project will be designed for the complete D3 and E1 segments, but construction will begin on segment E1 only after appropriate funding becomes available.

10. **PROJECT PERSONNEL**

 Executive Director
 Tom Zlotkowski, PE
 Capital SouthEast Connector JPA
 10640 Mather Blvd #120
 Mather, CA 95655

 Project Managers
 Derek Minnema, PE
 Capital SouthEast Connector JPA
 10640 Mather Blvd #120
 Mather, CA 95655
 Matthew Salveson, PE
 Dokken Engineering
 110 Blue Ravine Road, Suite 200
 Folsom, CA 95630

 Project Engineer
 Juann Ramos, PE
 Dokken Engineering
 110 Blue Ravine Road, Suite 200
 Folsom, CA 95630
Environmental Planner
Namat Hosseinion 916-858-0642
Dokken Engineering
110 Blue Ravine Road, Suite 200
Folsom, CA 95630

11. PROJECT REVIEWERS
• Capital SouthEast Connector Executive Director – Tom Zlotkowski
• Capital SouthEast Connector Project Manager – Derek Minnema

12. ATTACHMENTS
A. Geometric Approval Drawings
B. Project Cost Estimate
C. Traffic Evaluation Report (Less Appendices)
D. Right of Way Needs Map and Estimate
E. Life Cycle Cost Analysis
F. Preliminary Drainage Report (Less Appendices)
G. Preliminary Geotechnical Design Report (Less Appendices)
H. Preliminary Foundation Report
I. Risk Management Plan
J. Lighting Plan
K. Completed D3 Segment As-Built Cross-Sections
L. Completed White Rock Road Widening in El Dorado County As-built Cross-Sections
M. Utility Tracking Matrix
N. Proposed Structures and Locations
O. Dedicated Truck Climbing Lane Memorandum
P. Truck Management Plan
Q. Phase 2 Geometrics
R. Project Cost Estimate